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Abstract

Exhaust mufflers, large exhaust stacks, and turbofan engines are common examples of ducted noise. The
most useful measure of the sound produced by these noise sources is the sound power transmitted along the
duct. When airflow is present, sound power flow can no longer be uniquely determined from the usual
measurements of acoustic pressure and particle velocity.
One approach to sound power determination from in-duct pressure measurement, and the one discussed

in this paper, is to predict the relationship between the sound power and pressure based upon an assumed
mode amplitude distribution. This paper investigates the relationship between acoustic pressure and power
for a family of idealized source distributions of arbitrary temporal and spatial order. Incoherent monopole
and dipole sources uniformly distributed over a duct cross-section can be obtained as special cases. This
paper covers the sensitivity of the pressure–power relationship to source multipole order, frequency and, in
particular, flow speed. It is shown that the introduction of flow in a hard-walled duct can have a substantial
effect on the behavior of the pressure–power relationship for certain source distributions. Preliminary
experimental results in a no-flow facility are presented in order to verify some of the main results.
r 2002 Published by Elsevier Science Ltd.

1. Introduction

Exhaust mufflers, large exhaust stacks, and turbofan engines are common examples of ducted
noise. The most useful measure of the sound produced by these noise sources is the sound power
transmitted along the duct. Unlike acoustic pressure and other field variables, sound power is a
conserved quantity that provides a single index of the source strength. Its measurement, however,
is difficult and must usually be inferred from a number of acoustic pressure measurements made,
either inside the duct, or in the radiated far field. A fundamental difficulty with making power
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measurements from in-duct pressure measurements is the presence of airflow. The conventional
method of determining sound power from measurements of acoustic intensity is no longer
possible when a mean flow is present. Munroe and Ingard [1] show that the usual approach of
deducing acoustic particle velocity from the pressure gradient is no longer valid when the direction
of flow and sound propagation differs. Under these conditions they show that the relationship
between these quantities is non-unique.
Determination of sound power from measurements of acoustic pressure is possible in these

situations when there is a priori knowledge of either the source distribution or, equivalently, the
mode amplitude distribution. In this case the power–pressure relationship may be determined
theoretically, and may then be applied to the pressure measurements to deduce the sound power
transmitted along the duct. Unfortunately, the source distribution is rarely known in sufficient
detail for this relationship to be applied, and the number of modes may be too large for the
amplitudes of individual modes to be measured with sufficient accuracy. An alternative approach,
and the one explored in this paper, is to relate the sound power to the measured pressure by
assuming an idealized mode amplitude or source distribution. This paper investigates the
relationship between pressure and power for a number of idealized source distributions. Of
particular interest here is the sensitivity of this relationship to the assumed source distribution
and, in particular, the effect of flow speed. For simplicity, the analysis will be restricted to hard
walled infinite ducts. The analysis will exclude:

* Reflections from the open end.
* Departure from plug-flow propagation due to shear profile, including the duct wall boundary
layer.

* Cut-off modes.
* Measurement noise due to, for example, turbulence.

The effect of these factors on sound power measurement in flow-ducts is discussed extensively
in a recent paper by Neise and Arnold [2].

2. Modal transmission

The infinite duct under investigation is presented in Fig. 1.
The in-duct sound field can be expressed as the sum of modal components p ¼P
N

m¼�N

P
N

n¼0 pmn; where (m,n) are the usual circumferential and radial mode indices. The

Fig. 1. Semi-infinite, hard walled unflanged circular duct with associated co-ordinate system and continuous source

distribution represented by the shaded region.
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homogeneous wave equation for sound in a uniform flow is

1

c2

%D2

Dt2
�r2

� �
p ¼ 0; ð1Þ

where %D=Dt ¼ @=@t þ cMxð@=@xÞ is the convected derivative operator associated with the mean
flow velocity (cMx,0,0) in the (y,x) system and c is the sound speed in the uniform medium. Above
its cut-off frequency, at a single frequency o, a single incident mode of amplitude amn is described
by

pmnðy; xÞ ¼ e�iotamnCmnðyÞeikxmnx: ð2Þ

Substituting Eq. (2) in Eq. (1) gives

kxmn ¼
amn � Mx

1� M2
x

� �
o
c
; ð3aÞ

amn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðkmn=kÞ2ð1� M2

xÞ;
q

ð3bÞ

where kmn are a set of eigenvalues that are characteristic of the duct cross-section such that the
corresponding mode shape functions Cmn, defined by r2

> þ k2mn

� �
CmnðyÞ ¼ 0; also satisfy the

duct-wall boundary conditions. The sign convention adopted here is such that Mx>0 represents
sound propagation in the direction of the flow (duct exhaust) while Mxo0 represents propagating
waves in the opposite direction to the flow (duct inlet). The parameter a, which we shall call the
cut-on ratio, takes values between a=0 at the modal cut-off frequency o ¼ omn ¼ kmnc
ð1� M2

xÞ
1=2; and a ¼ 1 aso=omn-N; corresponding to modes well above cut-on.

3. Ratio of sound power to mean square pressure average over a duct cross-section

In this paper, we are concerned with the behavior of the non-dimensional quantity bS defined
by Eq. (4) below. Given bS, the total transmitted sound power %W may be deduced from
measurements of the mean squared pressure averaged over a duct cross-section, /p2SS ¼
1
2
S�1

R
S

pp�dS: The definition of bS is

%W ¼ bS

S p2
D E

S

rc
; ð4Þ

where r is the mean density. We shall adopt the generalized definition of sound power flow in a
uniform axial mean flow given by [3]

%W ¼ 1
2

Z
S

rcMxuxu�
x þ Mxpp�=rc þ 1

2
1þ M2

x

� �
pu�x þ p�ux

� �� 
dS; ð5Þ

P. Joseph et al. / Journal of Sound and Vibration 264 (2003) 523–544 525



where ux denotes axial particle velocity. The time averaged (mean) squared pressure at a position
(y,x) in the duct in a narrow frequency band may be written as

p2ðy; xÞ ¼ 1
2
E

X
m;n

amnCmnðr; yÞeikxmnx

�����
�����
2

8<
:

9=
;; ð6Þ

where E{} denotes the expectation. For incoherent excitation we treat the mode amplitudes as
uncorrelated random variables so that E amna�

m0n0

� �
¼ 0 for m; n½ 
a m0; n0½ 
; and the summation is

restricted to cut-on modes for which 0pap1 [3], which in Eq. (6) leads to

p2 rð Þ ¼ 1
2
E amnj j2
� �

C2
mn r; yð Þ: ð7Þ

This situation is appropriate to many random broadband excitation mechanisms such as
unsteady combustion and the turbulence–airfoil interaction responsible for broadband noise
generation in turbofan engines. Averaging Eq. (6) in this way removes the dependence on x and y,
suggesting that, for circular ducts for example, the mean squared pressure in the duct is
axisymmetric. Note that the presence of reflections at the open end (which are neglected in this
investigation) will introduce some axial pressure variation, as observed in, for example, the
experimental results presented in Section 8.
The mean squared pressure is now averaged over a duct cross-section S. On making use of the

normalization property S�1
R

S
C2

mn yð ÞdS ¼ 1; Eq. (7) becomes

p2
D E

S
¼

1

S

Z
S

p2 y; xð ÞdS ¼ 1
2

X
m;n

E amnj j2
� �

: ð8Þ

This result could have been derived using the orthogonality property of the mode shape
functions. Eq. (8) is therefore completely general and is valid even for correlated mode
amplitudes. The reason for introducing the assumption of uncorrelated mode amplitudes here is
that it will be shown to be a useful approximation when the relationship between sound power
and the mean square pressure at the duct wall is investigated in Section 7.
The modal solution of Eqs. (2) and (3), together with the axial particle velocity obtained from

the linearized momentum equation, substituted in Eq. (5), leads to the following generalized
definition of the time-averaged acoustic sound power carried by a single mode above cut-off in an
axial uniform mean flow [3]

%W ¼
X
m;n

%Wmn; %Wmn ¼
Sjamnj

2amn

2rc

1� M2
x

� �2
1� amnMxð Þ2

; ð9Þ

where S is the duct cross-sectional area and the expectation has been dropped for brevity.
Comparison between Eqs. (3a) and (9) makes explicit that the signs of a relate to the direction of
energy transmission and not the direction of phase velocities. Eqs. (8) and (9) in Eq. (4) give the
following general expression for bS as

bS ¼ 1� M2
x

� �2Pm;n jamnj
2amn= 1� amnMxð Þ2

� 
P

m;n jamnj2
: ð10Þ
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4. Source models

4.1. Uncorrelated sources of arbitrary spatial and temporal order uniformly distributed over a duct

cross-section

In this section, we derive the relationship between the mode amplitudes excited in an infinite
hard-walled duct containing an axial mean flow and the cut-on ratio a, for incoherent sources of
arbitrary spatial and temporal order uniformly distributed over a duct cross-section. The
inhomogeneous wave equation for sound in a uniform flow is

1

c2

%D2

Dt2
�r2

� �
p ¼ q: ð11Þ

Common forms of q are

q ¼ rG ðG ¼ volume acceleration source distributionÞ;

q ¼ r
%DQ

Dt
ðQ ¼ volume velocity distributionÞ;

q ¼ r
%D2s
Dt2

ðs ¼ volume displacement distributionÞ;

q ¼r � F ðF ¼ applied force distributionÞ: ð12Þ

A generalization of these possibilities is

q ¼
%D

Dt

� �n �@ð Þm

@xi@xjy
qijy; ð13Þ

which represents a source distribution of temporal order n and spatial order m. In what follows the
source distribution is limited to axial components1 of qij. In this case

q ¼
%D

Dt

� �n �@

@x

� �m

qxxy: ð14Þ

Consider a single mode excited in a semi-infinite duct by a source distribution confined to a single-
axial location. Under these circumstances Morfey [3] shows that for a single mode the spatial
differentials in Eq. (13) are equivalent to

�@

@x

� �m

-ð�ikxmnÞ
m: ð15Þ

Similarly, the temporal differential in Eq. (13) may be replaced by

%D

Dt

� �n

- �ioþ U
@

@x

� �n
¼ �io

1� aMx

1� M2
x

� �� �n
: ð16Þ

Combining Eqs. (13)–(16) and following the approach described in, for example, Ref. [4] leads to
a general expression for the mode amplitude jaðm;nÞmn j2 excited in a semi-infinite duct by an incoherent
source distribution of spatial order m and temporal order n, uniformly distributed over a duct

1Non-axial components are equivalent to sources of lower order, in the modal formulation.
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cross-section:

aðm;nÞ
mn

�� ��2p 1

a2mn

Mx � amn

1� M2
x

� �2m
1� amnMx

1� M2
x

� �2n

: ð17Þ

Under this indexing convention the source distributions of Eq. (17) take the index pairs: (m,n) for
volume acceleration sources, (m,n)=(0,1) for volume velocity (monopole) sources(m,n)=(0,2), for
volume displacement sources, and (m,n)=(0,1) for axial dipole sources. For sources of non-zero
spatial order, m>0, the mode amplitudes are non-monotonic functions of the cut-on ratio a,
dropping to zero at amn=Mx. This condition occurs at the zero-Mach number cut-off frequency
o ¼ ckmn: Eq. (17) in Eq. (10) gives the following general expression for the non-dimensional ratio
of incident sound power and mean square pressure averaged over a duct cross-section:

bðm;nÞS ¼
1� M2

x

� �2P
m;n a

�1
mnð1� amnMxÞ

2ðn�1ÞðMx � amnÞ
2mP

m;n a�2mnð1� amnMxÞ
2nðMx � amnÞ

2m : ð18Þ

4.2. Equal energy per mode and equal energy density per mode

Two alternative source models are the assumption that all cut-on modes carry equal power, and
that all cut-on modes produce equal energy density (total acoustic energy per unit volume).
Evidence to support the latter as being the most appropriate model for fan noise in ventilation
ducts is presented in Ref. [5]. For equal energy per mode we set %Wmn ¼ $ in Eq. (9). The resulting
mode amplitude distribution jaðeeÞ

mn j
2 is

aðeeÞ
mn

�� ��2¼ 2rcS�1a�1mn$
ð1� amnMxÞ

2

ð1� M2
xÞ

: ð19Þ

For the ‘equal energy density per mode’ source model we note the following generalized definition
of the volume-averaged energy density: Pmn ¼ Wmn=Scgmn; where cgmn denotes the modal axial
group velocity defined by cgmn ¼ @o=@kx: Performing the differentiation on Eq. (3a) yields
cgmn=c ¼ ð1� M2

xÞamn=ð1� amnMxÞ: The resulting expression for Pmn is given in Eq. (20a), and
the mode amplitude distribution jaðeeÞ

mn j
2 obtained by setting Pmn ¼ P is given by Eq. (20b),

Pmn ¼
amnj j2

2r0c2
ð1� M2

xÞ
1� amnMx

; ð20aÞ

aðeeÞ
mn

�� ��2¼ 2Pr0c
2ð1� amnMxÞ
ð1� M2

xÞ
: ð20bÞ

Comparison of Eqs. (19) and (20b) with Eq. (18) shows that, in general, the source models
based on assumptions about constancy of modal energy are not members of the general family of
multipole source distributions of Eq. (18) parameterized on (m,n). The single exception occurs for
Mx=0. At zero flow speed the ‘equal energy per mode’ model, the ‘equal energy density per mode’
model, and both the incoherent uniform-distribution models of monopoles and axial dipoles all
collapse to the single source family, jamnj

2
pa�2ðm�1Þmn : As discussed in Ref. [4], values of the index

m ¼ 3=2 and m=2 correspond, respectively, to equal energy per mode and a uniform distribution
of incoherent monopoles. Setting m=1 corresponds, simultaneously, to a uniform distribution of
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incoherent axial dipoles and equal energy density per mode. This is because, even though the
modal sound power is proportional to a, and therefore tends to zero as cut-off is approached, the
speed with which this diminishing energy is transmitted along the duct also lessens at precisely the
same rate, equal to the zero-flow group velocity a. Thus in the absence of flow, an axial dipole
distribution is equivalent to the assumption of constant modal energy density.
Using Eqs. (19) and (20b) in Eq. (10) gives the following expressions for bS for the case of equal

energy per mode and equal energy density per mode:

bðeeÞ
S ¼ N

X
m;n

1� amnMxð Þ2

amn

" #�1

; ð21Þ

bðeeÞ
S ¼

ð1� M2
xÞ

2P
m;n amnð1� amnMxÞ

�1P
m;nð1� amnMxÞ

; ð22Þ

where N=N(ka, Mx) is the total number of propagating modes. Eqs. (18)–(22) are likely to be
inaccurate at low frequencies (kao0.5) where the presence of reflections from the open end can no
longer be neglected. The present analysis will be restricted to frequencies above this.

5. Computed bS versus frequency

The eigenvalues for a hard-walled cylindrical duct of radius a, and a rectangular duct of
dimensions a and b, are given by

kmn ¼ j0mn=a; kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnp=aÞ2 þ ðmp=bÞ2

q
: ð23a;bÞ

Here, j0mn is the nth stationary value of the Bessel function of order m. Eqs. (18), (21) and (22) were
used to compute bS as a function of non-dimensional frequency ka between 1 and 250 in a circular
duct. Predictions were obtained for the axial dipole source distribution, the monopole source
distribution, and the assumption of equal energy per mode and equal energy density per
mode. The results for the representative Mach numbers of Mx=0, 70.2 and 70.4 are plotted in
Figs. 2–5. The predictions are normalized on the plane wave result bs ¼ ð1þ MxÞ

2 of Eq. (25).
These results suggest that the frequency variability of bS for some source distributions is more

greatly affected by flow-speed than others. This variability for the four source models plotted in
Figs. 2–5 is quantified in Fig. 6. It shows the variance of bS normalized on its mean value,
calculated over the frequency band 20pkap30; as a function of Mach number.
The frequency variability in bS is observed to increase with increasing flow speed in an exhaust

duct but diminish with increasing flow speed in a duct inlet. The axial dipole distribution is most
sensitive to flow-speed, as clearly shown in Fig. 2. At zero flow speed bS remains within a narrow
range of values over the entire frequency range. Upon the introduction of the small flow speed of
Mx ¼ 70:1; bS drops close to zero at the cut-off frequencies. The severity of this ‘drop out’
phenomenon worsens considerably with increasing Mx. For Mx ¼ 70:3; typical of the flow speeds
in turbofan engine inlets and exhausts, fluctuations in bS are so rapid, particularly at high
frequencies where the modal density is very high, its practical application to determine sound
power from acoustic pressure measurements is susceptible to large error. The cause of this
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behavior is readily explained by the sensitivity of the mode amplitudes to small values of Mx at
frequencies very close to cut-off. For Mx{1 and a{1 in Eq. (18),

aðm;nÞ
mn ðMxÞ

�� ��2
a
ðm;nÞ
mn ð0Þ

��� ���2 Eð1� Mx=amnÞ
2m ðMx{1; amn{1Þ ð24Þ

indicating that for m>0 the mode amplitudes at cut-off are finite only for Mx precisely equal to
zero. For non-zero Mach numbers the amplitudes of modes close to cut-off tend to infinity
leading to the large fluctuations in bS observed in Fig. 2 for m=1. For m=0, however, Eq. (24)
predicts that the behavior of the mode amplitudes close to cut-off are not affected by flow speed.
This is verified in Fig. 3 where fluctuations in bS are not strongly influenced by Mx. The
simulation results of Figs. 2–6 may be summarized as

* The relationship between sound power flow and the mean square pressure in a hard walled,
infinite duct generally appears as a highly irregular function of frequency. Frequency
irregularity arises from the behavior of individual modes at frequencies close to their cut-off
frequencies.

* The frequency irregularity of bS for sources of non-zero spatial order (e.g., dipoles) is more
greatly affected by flow speed than sources of temporal order (e.g., monopole sources). This is
due to the sensitivity to flow of the mode amplitudes close to cut-off.

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0
101 102

Fig. 2. The ratio bS of transmitted sound power to mean squared pressure averaged over a duct cross-section evaluated

for incoherent axial dipole sources uniformly distributed over a duct cross-section for different axial Mach numbers.
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* Frequency irregularity is appreciably less for source models based on constancy of modal
energy rather than sources of prescribed multipole order.

* Frequency variability increases with increasing axial Mach number in the duct exhaust, but
lessens with increasing Mach number in the duct intake.

* A well-defined high-ka asymptote only exists in some cases. We will show in Section 6 that these
are for the source distributions of equal energy per mode, equal energy density per mode at all
flow speeds, and for the axial dipole distribution at zero flow speed.

6. Low and high-frequency limiting behaviors of bS

6.1. Low frequencies: 1okao1.84

At the very low frequencies of kao1, only the plane wave propagates to the open end with
significant reflection back along the duct. For duct lengths exceeding one wavelength the in-duct
sound field is highly reactive with small sound power–pressure ratio. The sound power estimate at
these frequencies is consequently sensitive to measurement error in the acoustic pressure. In the
frequency range 1pkap1:84=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M2

x

p
plane waves can propagate with negligible reflection from

the open end. Setting N=1 and a=1 in Eqs. (18), (21) and (22) gives the source independent plane
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100 101 102

Fig. 3. The ratio bS of transmitted sound power to mean squared pressure averaged over a duct cross-section evaluated

for incoherent monopole sources uniformly distributed over a duct cross-section for different axial Mach numbers.

P. Joseph et al. / Journal of Sound and Vibration 264 (2003) 523–544 531



wave result

bS ¼ ð1þ MxÞ
2 1pkap1:84=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M2

x

q� �
: ð25Þ

6.2. High-frequency limit: ka-N

At suitably high ka, the discrete summation of modes in Eq. (10) may be approximated by the
integration over a continuum of modes,

bS ¼ ð1� M2
xÞ

2

R 1

0 jaðaÞj2anðaÞ
�

=ð1� aMxÞ
2

daR 1

0 jaðaÞj
2nðaÞda

ðka-NÞ: ð26Þ

Here n(a) is the normalized modal density function defined by

nðaÞ ¼
Nðaþ daÞ � NðaÞ

Nda

����
lim da-0

;

Z 1

0

nðaÞ da ¼ 1; ð27Þ
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Fig. 4. The ratio bS of transmitted sound power to mean squared pressure averaged over a duct cross-section evaluated

under the assumption of ‘equal energy per mode’ for different axial Mach numbers.

P. Joseph et al. / Journal of Sound and Vibration 264 (2003) 523–544532



where N(a) is the number of modes with ‘a’ values of between 0 and a. Following Rice [6], the
high-ka asymptotic density function n, expressed in terms of a, is given by

n að Þ ¼ 2a: ð28Þ

Eq. (28) indicates a scarcity of modes that are just cut on compared with a higher population of
modes that are well cut on. Eq. (28) in Eq. (26) evaluated for the mode amplitude distribution
functions of Eqs. (19) and (20b) give

b eeð Þ
S ¼ 1

2
1� Mx þ 1

3
M2

x

� ��1
ka-Nð Þ; ð29Þ

b eedð Þ
S ¼

6 1� M2
x

� �
1
2
M�1

x þ M�2
x þ M�3

x ln 1� Mxð Þ
� 

2Mx � 3
ka-Nð Þ: ð30Þ

Eqs. (29) and (30) are plotted in Fig. 7.
As both source models are based on assumptions of constancy of modal energy, the two curves

follow roughly the same behavior over most of the Mach number range. Evaluating Eqs. (29) and
(30) for Mx=0 gives

b eeð Þ ¼ 1
2
; b eedð Þ ¼ 2

3
Mx ¼ 0; ka-Nð Þ: ð31a;bÞ

1

0.5

1

0.5

1

0.5

0

1

0.5

0

1

0.5

0

0

0

100 101 102

Fig. 5. The ratio bS of transmitted sound power to mean squared pressure averaged over a duct cross-section evaluated

under the assumption of ‘equal energy density per mode’ for different axial Mach numbers.
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Fig. 7. High-ka asymptotic variation of bS with Mach number for the source models of equal energy per mode, and

equal energy density per mode.
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Fig. 6. Normalized variance of bS calculated over the frequency bandwidth 20pkap30; for four source distributions as
a function of axial Mach number.
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Eq. (31a) indicates that, for zero flow, the equal power per mode assumption is equivalent to a
hemi-diffuse field in which acoustic energy arrives at the open end from all solid angles equally.
Eq. (31b) is identical to that predicted for the axial dipole distribution in zero-flow (Fig. 2) but
differs when flow is introduced. As discussed previously in Section 4.2 the axial dipole and equal
energy density per mode model are equivalent source models at zero flow-speed.
The corresponding high-ka expression of Eq. (18) for the multipole source distributions,

however, generally fails to converge for most (m,n) combinations. Whilst the numerator of Eq. (18)
always converges, and hence the multi-mode transmitted sound power remains theoretically finite,
the denominator, which is proportional to mean square pressure, does not. This function diverges
slowly to infinity as

lim
e-0

Z 1

e
2a�1ð1� aMxÞ

2nðMx � aÞ2mda-� 2M2m
x lim

e-0
½ln e
: ð32Þ

Eq. (32) explains the tendency observed in Figs. 2 and 3, for bS to approach zero with increasing
ka, to the behavior of modes close to cut-off. The slow logarithmic divergence of this integral
indicates that any dissipation present in the duct, for which near-cut-off modes are most affected,
will ensure its convergence. The range of parameters in Eq. (32) for which convergence is obtained
without dissipation are m>0 and Mx=0, for any value of n. Allowing the Mach number to go to
zero offsets the logarithmic growth in e. For example, putting n=0 and Mx=0 in Eq. (26) for the
amplitude distribution of Eq. (18) gives

b 0;mð Þ
S ¼

2m
ð2mþ 1Þ

Mx ¼ 0; n ¼ 0; ka-Nð Þ: ð33Þ

Physically important cases of Eq. (33) are axial dipoles, b 0;1ð Þ
S ¼ 2=3; and axial quadrupoles,

b 0;2ð Þ
S ¼ 4=5:

6.3. Sound power variation with Mach number

For sources that are not aerodynamic in origin, in the sense that their source strengths are not
dependent upon the existence of a flow2, the present approach may be used to obtain closed form
expressions for the high-ka asymptotic sound power variation with Mx. These results are also
useful, not only as a means of comparing the bS-sensitivity of the various source distributions to
flow, but also for allowing free-field sound power calculations involving aerodynamic sources to
be corrected to include duct convection effects. Writing the high-ka behavior of the mode
amplitudes as continuous functions of a and Mx, and using w(ka, Mx) to denote N(ka, Mx)/
N(ka, 0), the relative increase in the number of modes due to the mean flow, expressions for the
high-frequency Mach number variation of the transmitted sound power, compared to its value at
Mx=0, may be deduced of the form

%Wðm;nÞ
x ðMxÞ
%W
ðm;nÞ
x ð0Þ

¼ wðka;MxÞ

R 1

0 ð1� aMxÞ
2ðn�1ÞðMx � aÞ2mda

ð1� M2
xÞ

2ðmþnÞ R 1

0 a
2mda

ðka-NÞ; ð34Þ

2Fan noise is a common example of an aerodynamic source. The Mach number dependence of the transmitted sound

power for these sources, particularly at low flow speeds, is dominated by its influence on the source strength. By

comparison, the convection effects discussed here, which are a result of modal propagation, are generally much weaker.
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%WðeeÞ
x ðMxÞ
%W
ðm;nÞ
x ð0Þ

¼ wðka;MxÞ ðka-NÞ; ð35Þ

%WðeedÞðMxÞ
%WðeedÞð0Þ

¼ wðka;MxÞ

R 1

0 a2ð1� M2
xÞ=ð1� aMxÞ

� 
daR 1

0 a
2da

ðka-NÞ; ð36Þ

In the high-frequency limit ðka-NÞ; the ratio wðka;MxÞ tends to ð1� M2
xÞ

�1: This result follows
from Eq. (3b) where the effect of a mean flow is to reduce the cut-off frequencies by the reciprocal
of this factor. No general closed-form solution exists to Eq. (34) that is valid for all (n, m).
However, solutions for the six main source distributions of interest here are given by

%Wð Þ
x ðMxÞ
%W
ð Þ
x ð0Þ

¼

3M�3
x 1� M2

x

� ��1
M4

x � M3
x � M2

x

�
þ2Mx � 2 1� M2

x

� �
ln 1þ Mxð Þ

 m; nð Þ ¼ 1; 0ð Þ;

1þ Mx m; nð Þ ¼ 0; 0ð Þ;

1� M2
x

� ��1 m; nð Þ ¼ 0; 1ð Þ;

1� M2
x

� ��3ð1� Mx þ 1
3
M2

xÞ m; nð Þ ¼ 0; 2ð Þ;

1� M2
x

� ��1
equal energy per mode;

�3 1
2M

�1
x þ M�2

x þ M�3
x ln 1� Mxð Þ

� �
equal energy density per mode:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð37Þ

Eqs. (37) are plotted in Fig. 8
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5

0
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-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 8. Multimode, high-ka Mach number dependence of the sound power flow for the source distributions of equal

energy per mode, equal energy density per mode, an incoherent distribution of volume displacement sources, volume

velocity sources, volume acceleration sources and axial dipole sources uniformly distributed over a duct cross-section.
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Generally, the power is predicted to increase with increasing Mach number in the duct exhaust,
but decrease with increasing Mach number in the duct inlet. Exceptions are volume displacement
sources that have a minimum value of �0.05 dB at Mx=+0.2, and axial dipole sources whose
minimum value is about –2 dB at Mx=�0.39. Other interesting findings are that the equal energy
per mode and the volume acceleration source models are predicted to have identical high-ka Mach
number dependence. Furthermore, this dependence is an even function of Mx suggesting that their
sound power outputs are transmitted upstream and downstream equally.

7. Ratio of sound power to mean squared pressure evaluated at the duct wall

In practice acoustic pressure measurement positions made in a duct carrying a flow are often
limited to the wall where the flow speed is much less than in the free stream. Correspondingly, we
define a non-dimensional quantity ba that relates the sound power transmitted along the duct to a
single value of the mean square pressure p2 yw

� �
at the duct wall,

%W ¼ ba

Sp2 yw

� �
rc

: ð38Þ

An accurate analysis of this function should include mode shape functions consistent with the
shear profile in the real duct, with particular attention being paid to its behavior in the vicinity of
the duct wall boundary layer. However, this detailed study is beyond the scope of the current
paper and will be investigated in a subsequent report. By restricting the computations to the low
flow speeds for which boundary layer effects are negligible ba may be predicted by combining
Eqs. (7) and (8) evaluated at the duct wall. Rather than compute ba directly, however, we focus on
the ratio p2ðywÞ=/p2SS; which we will now show has useful high-ka asymptotic properties that are
independent of source distribution and flow-speed. This information, in conjunction with
knowledge of bS, may then be used to compute sound power. For incoherent modal addition this
ratio becomes

bS

ba

¼
p2ðywÞ

p2
D E

S

¼

P
m;n jamnj

2C2
mnðywÞP

m;n jamnj2
; ð39Þ

where yw denotes a position on the duct wall. The factor C2
mnðywÞ specifies the ratio of the mean

square pressure at the duct wall to that averaged over a duct cross-section due to a single mode. It
therefore has the interpretation as a measure of the degree to which the modal pressure is
concentrated at the wall. For rigid circular and rectangular ducts C2

mnðywÞ is given by

C2
mnðywÞ ¼ 1� ðm=kmaÞ2

� �1
; ð40Þ

C2
mnðywÞ ¼ enem

cos2ðnpy=aÞ; z ¼ b;

cos2ðmpz=bÞ; y ¼ a;

1; z ¼ b and y ¼ a:

8><
>: ð41Þ

Here, em=2 and 1 for ma0 and m=0, respectively. Noting that C2
mnðywÞX1 (which for the

circular ducts following the Bessel function property, moj0mnÞ suggests that p2ðywÞX/p2SS: By
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way of example, Eq. (39) was computed for the case of equal energy per mode, Mx=0.3, in the
corner and on the wall (but well away from corner) of a rectangular duct with dimensions of
a=0.4, b=0.92 (a2+b2=1), and on the wall of a circular duct. The smooth curves in Fig. 9
represent the mean of C2

mnðywÞ for the three cases.
For practical purposes, the important aspect of these results is their high-frequency asymptotes.

These are predicted to be 4 in the case of the rectangular duct for the corner measurement, and 2
for measurements made at the wall of both rectangular and circular ducts. These asymptotes are
found to be independent of either source distribution or Mach number. The smooth curves in
these figures, which have the correct high-ka limiting behavior, represents a statistical lower-

bound for the local mean of p2 yw

� �
=/p2SS: It is obtained by treating jamnj2 and C2

mnðywÞ in
Eq. (38) as independent random variables and regarding the modal summation

P
m;n as an

expectation Ef g: Under these assumptions, Eq. (39) becomes p2ðywÞ=/p2SS ¼ EfC2
mnðywÞg:

However, for the source distributions under consideration the function C2
mnðywÞ is observed to

consistently underestimate the ratio of mean square pressures. Thus

p2ðywÞ

p2
D E

S

¼
E jamnj2C2

mn yw

� �� �
E jamnj2
� � XE C2

mn yw

� �� �
: ð42Þ

This finding suggests that, rather than being independent parameters, jamnj2and C2
mnðywÞ are

correlated from which one can infer that the covariance between the two factors is positive. Thus,

4

3.5

3

2.5

2

1.5

1

0.5

100 101 102

Fig. 9. Mean square pressure at the wall divided by that average over a duct cross-section evaluated for the case of

equal energy per mode with Mx=0.3. Examples shown for a rectangular duct in the corner, rectangular duct on the wall

but away from the corner, and on the wall of a circular duct. Smooth curve denotes EfC2
mnðywallÞg:
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there is a tendency for modes of large amplitude to have their pressure distributions concentrated at
the duct wall. This is certainly true in circular ducts for the modes with large m value near cut-off, for
which j0mnEm: In this case both the mode amplitude and modal factor C2

mnðywÞ are comparatively
large as predicted by Eqs. (17) and (40), respectively. The usefulness of Eq. (43) is that its right-hand
side is independent of mode amplitude distribution and, for ka greater than about 10, it incurs less
than 20% error (E1dB) for the source distributions under investigation. Furthermore, it has the

correct low-ka and high-ka asymptotes of EfC2
mnðywÞg-1 and EfC2

mnðywÞg-2; respectively.
We now explore the variation of p2ðywÞ=/p2SS with source distribution and Mach number for

a circular duct with yw=(a, y). Figs. 10–12 depicts its behavior for the axial dipole, monopole and
equal energy per mode distributions for a range of flow Mach numbers.
These figures indicate that, whilst the general behavior is roughly the same, including the same

asymptote, differing source distributions and Mach numbers significantly affect the variability of the
relationship between pressure measurements made at the wall and that averaged over a duct cross-
section. It remains to be shown whether frequency averaging, or the introduction of dissipative liners,
will significantly smooth this variability to a degree that permits its application to measured data.

8. Experimental verification

8.1. Experimental set-up

Preliminary measurements have been made aimed at verifying experimentally some of the main
no-flow results presented in this paper. Measurements were made without flow in a circular duct

100 101 102

Fig. 10. Ratio of mean squared pressure at the duct wall to that averaged over a duct cross-section for a uniform

distribution of axial dipole sources distributed over a duct cross-section. Smooth curve denotes E C2
mnða; yÞ

� �
:
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of (i) the ratio between the radiated sound power to the mean square pressure averaged over the
duct cross-section, and (ii) the ratio between the mean square pressure at the duct wall to that
averaged over a duct cross-section. The duct used was a rigid plastic tube of length 1m, with

100 101 102

Fig. 11. Ratio of mean squared pressure at the duct wall to that averaged over a duct cross-section for the source mode,

equal energy per mode. Smooth curve denotes E C2
mnða; yÞ

� �
:

100 101 102

Fig. 12. Ratio of mean squared pressure at the duct wall to that averaged over a duct cross-section for a uniform

distribution of monopole sources distributed over a duct cross-section. Smooth curve denotes E C2
mnða; yÞ

� �
:
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0.23m internal diameter, and a wall thickness of 10mm. It was located midway though the joining
wall of two reverberation rooms, both of 13.1m3 in volume. One reverberation chamber, excited
by a loudspeaker driven by random broadband noise, was used to provide the diffuse field
excitation of the in-duct sound field necessary to create the condition of ‘equal energy per mode’
in the duct.3 The other reverberation chamber was used to determine the steady state radiated
sound power using the Sabine energy balance technique. Photographs looking into the duct from
the receiver room are presented in Fig. 13.
The sound field within the duct was measured by a small electret microphone attached to a thin

rod (shown above) that was allowed to slide between two small diametrically opposite holes. The
measurement plane was located approximately 30 cm from the end of the duct to reduce the
influence of reflected cut-off modes. This mechanism allowed the traverse of the microphone
along a duct diameter, which were undertaken in 11 equal increments. Precautions were taken to
ensure that the microphones were positioned close to, but not touching, the walls. At each radial
position the acoustic pressure was measured circumferentially at every 601 by rotating the duct
about its axis. A microphone positioned in the receiver room was used to determine the radiated
sound power from the average of the mean square pressure obtained at seven different positions
around the room. Each pressure measurement made in the duct and in the receiver room was then
averaged over six loudspeaker positions in the source room to increase the ‘diffuseness’ of the
excitation sound field.
Spectral acoustic measurements made inside the duct and in the receiver room were derived

from 200, 2048 point FFT averages at a sampling frequency of 51.2 kHz. This corresponds to a
25Hz resolution over a 25 kHz bandwidth. The receiver room reverberation time was measured in
third-octave bands to give a Schr .oder frequency of 766Hz, corresponding to ka=1.7 in duct-
frequency units. This data was also used to determine the Sabine absorbing area as a function of
frequency for subsequent sound power determination.
The measured ratio between the pressure spectrum and that averaged over the duct cross-

section obtained using a discrete approximation to /p2SS is presented below (solid curve) in
Fig. 14. Also shown (dashed curve) is the theoretical prediction, obtained assuming equal energy

Fig. 13. Photograph of duct taken from receiver room looking into the duct.

3The equivalence between the assumption of ‘equal energy per mode’ and the hemi-diffuse field was demonstrated in

Eq. (31a). The converse is true by reciprocity.
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per mode. For consistency, the same discrete approximation to the surface-averaged mean square
pressure used in the measurements was used in the prediction.
Agreement between the experimental and theoretical curves is excellent at ka less than about 10

(about 5 kHz). Much of the fine detail present in the predictions, including the sharp

2.2
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1.8

1.6

1.4

1.2

1

0.8
2 4 6 8 10 12 14

Fig. 14. Ratio of pressure spectrum at the wall of a hard-walled duct to its value averaged over a duct cross-sectional

area. Comparison between measured result (dashed curve) and theoretical prediction (solid curve).

Fig. 15. Comparison between measured value of the quantity bS, defined by Eq. (4) under diffuse field excitation, and

that predicted by Eq. (22) for Mx ¼ 0:
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discontinuities at the cut-off frequencies, is faithfully reproduced in the measurements.
Oscillations present in the experimental results, but not in the predictions, can be attributed to
axial standing waves that are not included in the infinite-duct model. At ka exceeding 10 the
experimental results begin to fall below the predicted values. Duct-wall vibrations are unlikely to
be the cause of this discrepancy. Accelerometer measurements made at the duct wall reveal that
wall vibrations are greatest at ka less than about 4, and drop by 30 dB at frequencies above this.
Explanations for these differences at high frequencies are currently being sought.
Fig. 15 presents a comparison between the measured variation of ba versus frequency (solid

curve) and the predicted variation obtained from the prediction in Fig. 4 of Wrc=S/p2S divided
by the prediction in Fig. 11 of p2ðaÞ=/p2SS for Mx=0.
Contrary to the results in Fig. 14, extremely good agreement between the measured and

predicted curves is observed at ka exceeding 10, and very poor match is observed below it. The
most likely explanation of this low-frequency discrepancy is the presence of axial standing waves
in the duct. Modal reflection is known to be most significant at the cut-off frequency in which the
modes strike the open end at angles close to 901 to the duct axis. However, reflected modes will
not affect the results presented in Fig. 11, which were measured in the same plane.

9. Conclusions

A non-dimensional parameter bS has been derived and computed that relates the total sound
power propagating towards the open end of a duct containing a uniform flow to measurements of
the mean-squared pressure averaged over a duct cross-section, and to a single-pressure
measurement made at the duct wall. Expressions are presented to allow the computation of
this relationship for an incoherent distribution of sources of arbitrary temporal and spatial order
uniformly distributed over a duct cross-section. Also investigated are the source models of ‘equal
energy per mode’ and ‘equal energy density per mode’. Calculations shows that

* The relationship between sound power flow and the mean square pressure in a hard walled,
infinite duct is generally a poorly behaved, highly oscillatory function of frequency.

* Frequency variability is highest for source distributions of temporal, rather than spatial, order
* Frequency variability increases with increasing axial Mach number, but is less in the duct
intake than in the duct exhaust.

* Frequency irregularity is appreciably less for source models based on constancy of modal
energy rather than of multipole order.

* A well-defined high-ka asymptote is only observed in some cases. These are for the source
distributions of equal energy per mode and for the axial dipole distribution at zero Mach
number.

* The mean square pressure at the duct wall bears a simple relationship to its mean square value
averaged over the duct cross-section, that is only weakly dependent upon the mode amplitude
distribution. In the high-ka limit, the ratio between the two measurements tends to two.

Preliminary measurements of the radiated sound power and in-duct pressure made in the
absence of flow are used to determine bS and p2ðaÞ=/p2S experimentally. The duct was
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terminated into a reverberation chamber for the purpose of exciting the ducted sound field by a
high-frequency reverberant sound field in order to approximate to the condition of equal energy
per mode. Close agreement with theoretically predicted values of bS is obtained for ka values less
than 10, but not at frequencies above. The reason for this discrepancy has so far not been
satisfactorily resolved.

References

[1] D.H. Munroe, K.U. Ingard, On acoustic intensity measurements in the presence of mean flow, Journal of the

Acoustical Society of America. 65 (1979) 1402–1406.

[2] W. Neise, F. Arnold, On sound power determination in flow ducts, Journal of Sound and Vibration 244 (3) (2001)

481–503.

[3] C.L. Morfey, Sound transmission and generation in ducts with flow, Journal of Sound and Vibration 14 (1971)

37–55.

[4] P. Joseph, C.L. Morfey, Multi-mode radiation from an unflanged, semi-infinite circular duct, Journal of the

Acoustical Society of America 105 (5) (1999) 2590–2600.

[5] W. Frommhold, F.P. Mechel, Rechnerische Untersuchungen zur Bestimmung der Schalleistung in Rechteckka-

naklen Fraunhofer-Institut f .ur Bauphysik, BS 202/89 (1989).

[6] E.J. Rice, Multimodal far-field acoustic radiation pattern using mode cutoff ratio, American Institute of

Aeronautics and Astronautics Journal 16 (1978) 906–991.

P. Joseph et al. / Journal of Sound and Vibration 264 (2003) 523–544544


	Multi-mode sound transmission in ducts with flow
	Introduction
	Modal transmission
	Ratio of sound power to mean square pressure average over a duct cross-section
	Source models
	Uncorrelated sources of arbitrary spatial and temporal order uniformly distributed over a duct cross-section
	Equal energy per mode and equal energy density per mode

	Computed betaS versus frequency
	Low and high-frequency limiting behaviors of betaS
	Low frequencies: 1ltkalt1.84
	High-frequency limit: kararrinfin
	Sound power variation with Mach number

	Ratio of sound power to mean squared pressure evaluated at the duct wall
	Experimental verification
	Experimental set-up

	Conclusions
	References


